fD-A056 839 COLORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE
AN LALR(1) PARSER GRAMMAR FOR FORTRAN.(U)
JUN 78 R C RAUHAUSER

UNCLASSIFIED CU=CS=-129-78 ARO=15074.2-M

F/6 9/2
DAAG29=78=-G-0046
N

ARD 15074 2-m

ADA056839

DB FILE COPY.

z : TP T e S
e T s e s R R R e S R e e

|z

UNIVERSITY OF COLORADO

‘ AN LALR(1) PARSER GRAMMAR FOR FORTRAN
by

(/"T}Russ C./ Rauhauser |

De artment of -compuiter Science
University of Colorado at Boulder
Boulder, Colorado 80309

—— ——

e —————r—

L ——————————_—

'/ QU-C$-129-78 / "/ 7 Junegmwe7s

DEPARTMENT OF COMPUTER SCIENCE

Technical Report

DDC

i
{ o
UIEEIS

JUL 31 1978

LS an Lar(n) _PARSER GRAMMAR FOR FORTRAN |
by
Russ C.{Rauhause;?
Department- er Science

University of Colorado at Boulder
Boulder, Colorado 80309

g ——

14 / CU-C5-129-78 /

(\/J Junegee7s

™0 FILE COPY

AD No

.,’/v

| INTERIM JECHNICAL REPaRT
1

U.S. ARMY RESEARCH OFFICE
CONTRACGJ /DAAG29-78-6 Aot e o

/ N - ./‘ /7

Approved for public release;
Distribution Unlimited

. 0/
(/ / // of o : YAy //

o

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG_
NATED BY OTHER AUTHORIZED DOCUMENTS.

i

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under
grant no. MCS77-02194

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE HRROL S T L o
T. REPORT NUMBER 2. 30VT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
CH= PP y=
4. TITLE (and Subtitie) 5. YYPE OF REPORT & PERIOD COVERED
"An LALR(1) Parser Grammar for FORTRAN TL
2 o 6. PERFORMING ORG. REPORT NUMBER
b 7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)
Russ C. Rauhauser DAAG29-78-G-0046 .

MCS77-02194 - NSF

10. b &
9. PERFORMING ORGANIZATION NAME AND ADDR!S? 1] ::gﬁR‘Acoe';.KEcsrT NPul:.oaJECST TASK
Dept. of Computer Science

Univ. of Colorado at Boulder
Boulder, Colorado 80309

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. 5. Army Research Office June 1978
Post Office Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 55

T4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Otfice) 5. SECURITY CLASS. (of this report)

Inclassified

; . 15a. DECLASS'HCATlOWDO‘NGRkDING
SCHEDUL
NA

16. DISTRIBUTION STATEMENT (of thie Keport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, Il different from Report)

NA

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Avrmy position, unless ¢o desipnated by other authorized
documents.

19. KEY WORDS (Continue on reverse side if necessary and Identily by block number)

FORTRAN arammar, parser qrammar, LALR(1), structure tree

20. ABSTRACT (Continue on reverse side If necessary and identify by hock number)

‘An automatic parser generator is a tool for quickly 1mp1ement1nn procrammina
Tanauaae parsers. Parser aenerators based upon LR parsina have been built for
arammars satisfying the LR(0), SLR(1), and LALR(1) properties. Speed of the
resultina parser is comparable to that of a hand coded recursive descent parser.

DAVE, an automatic proaram testing aid, requires a flexible, easy-to-implement
parser. This report presents an LALR(1) qrammar for AMSI standard FORTRAN, ——f—~

AL

FORM
DD | [an 73 1473 EOITION OF ! NOV 63 1S OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. -

N suitable as input to an automatic parser generator. Its use in buildina DAVE

provides a measure of the desired flexibility, since new parsers for FORTRAN
dialects may be produced by simply modifyina the existina qrammar.

A powerful meta-lanquane is used to describe the grammar. Its features are
summarized, includina the method for specifyina automatic construction of
(intermediate-text) structure trees durina parsina. The report concludes with
a discussion of some of the more important decisions made during development
of the arammar. _

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

1, INTRODUCTION Page
11, THE GRAMMAR

1. Meta-language review ., . . . « . ¢« ¢ ¢« ¢ o 0 . o ..

2. Grammr YsEIng i o v e e s e e e e e s 15

I11. DISCUSSION

1. Information Sources« ¢« o o o e .. 25
2. Completeness . i - o . « = & s & « & wn % & o 0 & & 25
3. Scanner Interface ¢ ¢ 4 ¢ e 4 e o0 .. 26
4. Right-recupsion: o o o & + s« « & o & @ 28
APPENDICES
A - Structure Tree Diagrams « « « « « o . . . 31
B - Expression Grammar Transformations 45
BB O G R A B Y e R T O S e e . 55
ACCESSION for
wis White Section
e Buff Sectim [
UNANNOUNCED a
JUSTIFICATION....coocoscrecee s
BY....

DISTRIBUTION/AVAILABILITY CODES
Dist. _ AVAIL. ani/or SPECIAL

A

FIGURES

FIGURE

1. Meta-language keywords and special symbols

2. Tokens representing FORTRAN keywords and

special characters . . o o o & @ . o o b o . s e

3. Tokens requiring subrosa information

4. Structure tree representing A=B+C

5. Tree node stack during parse of A=B+C
6. Parse stack during parse of the FORTRAN statement

ENTERMAL A Bo€ o s = v 2 v 6% o v % = & 9 o e

Bl. Simple grammar for FORTRAN expressions

B2. Grammar with logical and arithmetic expressions

Combinedi . i e tts SR R s g e 1

B3. Expression grammar after four steps of back

SUDSETEULION « o = = & = o o s el s e e s

B4. Grammar after many steps of back substitution

and simpldfication = « & & 5 5 ¢ v 5w s oe e e .

B5. Expression grammar after back substitution in

the arithmetic expression sub-grammar

B6. Final LALR(1) grammar for FORTRAN expressions

Page

10
12

Abstract

An automatic parser generator is a tool for quickly implement-
ina programming language parsers. Parser generators based upon LR
parsing have been built for grammars satisfying the LR(0), SLR(1),
and LALR(1) properties. Speed of the resulting parser is comparable
o that of a hand coded recursive descent parser.

DAVE, an automatic program testing aid, requires a flexible, easy-
to-implement parser. This report presents an LALR(1) arammar for ANSI
standard FORTRAN, suitable as input to an automatic parser generator.

—Tts use in building DAVE provides a measure of the desired flexibility,
since new parsers for FORTRAN dialects may be produced by simply modify-

ing the existing grammar.

A powerful meta-lanquage is used to describe the grammar. Its
features are summarized, including the method for specifying automatic
construction of (intermediate-text) structure trees during parsing.
The report concludes with a discussion of some of the more important
decisions made during development of the grammar.

I. Introduction

Context-free grammars are widely recognized as appropriate tools for
describing the syntax of programming languages. Their formality has allowed
the language designer to communicate precisely and unambiguously his in-
tended structure, and more recently has allowed the language implementor
to automatically generate the parsing phase of his compiler.

FORTRAN was developed before the usefulness of grammars was fully
appreciated. Its standard document [1] uses English prose to communicate
syntactic structure. Since FORTRAN has already been widely implemented, a
FORTRAN grammar might appear to be of Tittle practical use today.

Recent interest in the development of software validation tools,
however, has kept the market for efficient, easy-to-generate FORTRAN parsers
very much alive. The DAVE project [2], currently under improvement at the
University of Colorado, is an example.

DAVE is an automatic program testing aid which performs a static
analysis of programs written in ANSI standard FORTRAN. Experience with
DAVE has uncovered a sizeable demand for diagnostic aids capable of
analyzing FORTRAN "dialects" as well. One solution is to provide a flex-
ible tool which may be easily converted to any of the FORTRAN variants.

The use of an automatic parser generator provides a step toward the desired
flexibility, since new parsers may be produced by simply modifying a basic
grammar,

The purpose of this report is to present a FORTRAN grammar which:
1) captures the structure of ANSI standard FORTRAN at the parsing
level, and
2) satisfies the LALR(1) property, a condition required by the
BOBSW parser generator system.
Details of the exact grammar requirements of the BOBSW system, and its use
in producing a parser for the DAVE project, may be found in [3].

It is assumed that the reader is familiar with grammars, their rela-
tion to programming languages, and the parsing process. A good elementary
treatment may be found in Gries [4]. Hopcroft and Ullman [5] provide a
more theoretical approach to grammars and their properties. The operation
of a parser generator based upon the LALR(1) property is described in
LaLonde [6].

Die

_—"

Section II contains a listing of the FORTRAN parser grammar and a
review of the meta-language used to describe it. Section III concludes
with a discussion of some important decisions made during development of

the grammar.

II. The Grammar

Keywords and special symbols belonging to the meta-language used
in this report are shown in Figure 1. Although keywords will appear
underlined in the grammar 1isting to follow, they are actually reserved
and may not be used as nonterminal symbols.

The meta-Tlanguage has been designed to accept nested "sub-grammar"
definitions. To facilitate machine checks on proper nesting, each grammar
is delimited by a pair of keywords:

parser Fortran_compilation_unit:

end Fortran_compilation_unit

The name following parser identifies the goal symbol of the grammar, and
must exactly match the name following end. A terminating colon on the
parser line allows the grammar writer to optionally omit the preceeding
name (it may never be omitted from the end 1ine). In this case, the
first production of the grammar serves to identify its goal symbol.

Productions are unordered and written in free form syntax. A
sharp (#). which may appear anywhere in the grammar, indicates that the
remaining portion of the current line is to be treated as a comment.

Non-terminal symbols are written as a sequence of one or more alpha-
betic, numeric, or underbar characters, beginning with an alphabetic.
Terminal symbols are delimited by single quotes, and may consist of any
sequence of printable characters except the single quote and blank.

The terminal symbols of a parser grammar correspond to tokens re-
ceived from a scanner module at parse time. Two kinds of tokens can be
identified. The first kind may be described as representing entities
having a unique form in the source language. A complete 1list of such
tokens for FORTRAN, representing keywords and special characters, is
given in Figure 2. A careful inspection of this list will reveal the
absence of several FORTRAN keywords and the addition of several new
ones. A discussion of issues relating to these anomalies is deferred
to Section III.

—

Li b

parser :
end ;

list ' (single quote)
rlist <
>
-
l
(
)
+
*
=>
Figure 1.

Keywords and special symbols belonging
to the meta-language used to describe
the grammar of this report.

e —p—

SUBROUTINE
FUNCTION
EXTERNAL
DIMENSION
EQUIVALENCE
LOGICAL
INTEGER
DOUBLEPRECISION
COMPLEX
REAL

O0R

AND

NOT
BLOCKDATA
RETURN
CONTINUE
END

I ~— -~

~

**

Figure 2

Complete 1ist of terminal symbols
(tokens) which represent FORTRAN
keywords and special characters.

DATA
COMMON
DO
ASSIGN
TO

GOTO
CALL
STOP
PAUSE
READ
WRITE
REWIND
BACKSPACE
ENDFILE
FORMAT
EOS
LOGIF
ARITHIF

The second kind of token represents entities which do not have a
unique representation in the source language. For example, a given pro-
gram may contain many different integer constants. When the scanner
module returns a token of type "integer constant", it must also include
some subrosa information indicating the exact integer chosen by the
programmer. Figure 3 gives a complete list of all such tokens as they
will appear in the FORTRAN grammar of this report. Sample subrosa
information is shown for each token. Notice that angle brackets are
used to distinguish tokens requiring subrosa information from the

simple tokens of Figure 2. |

The following example illustrates how a production may be written
in its most basic form.

Slash -> '/';

The production separator symbol (->) is preceeded by a single nonterminal
and followed by a sequence of zero or more terminals, nonterminals, and
meta-symbols. A semicolon terminates the production.

Very often a nonterminal symbol will appear as the left hand side of
more than one production. There are two (equivalent) ways of conveniently
grouping such productions together:

Field
-> Basic_field ;
-> Groupl;

and
Field
-> Basic_field|Groupl;

The vertical bar indicates alternation, and may also appear with parentheses
f to effect a kind of "distributive" property. For example,

E Program unit
3 -> (Subprogram|Program body) 'END'; |

is equivalent to

E Program_unit

-> Subprogram 'END'

-> Program body 'END';

o7l
<name> <1aTe1> <Iconst>
F S % |
M A X I 0 0 2 7 3
é
E <Rconst> <DPconst> <Octconst>
| ViR Ao Zalios
St | SRS EER O DA 7 7 7

4 SECRPE)\

AR T

Figure 3
Complete list of terminal

symbols (tokens) which require
associated subrosa information.

B

1 Two meta-symbols have been included to more conveniently describe
the concept of repetition. A trailing plus character (+) indicates "one
or more" of the entity which preceeds it. For example,

Sep -> Slash +;

; is written to express the fact that a separator may consist of one or
: more slashes. This same concept may be described without the plus, but
requires one additional production:

Sep
-> Slash
-> Sep Slash;

Similarly, a trailing asterisk (*) indicates "zero or more" of the entity
which preceeds it.

Keywords 1ist and rlist have been included to more conveniently
capture the syntax of ordinary lists of objects. For example, the
production

Ext
-> 'EXTERNAL' ‘'<pame>' list ',' ;

is written to indicate that a FORTRAN external statement must contain the
word EXTERNAL followed by a list of one or more names separated by commas.
Expressing the 1ist concept without a special keyword requires an addi-
tional nonterminal and two more productions:

Ext

-> 'EXTERNAL' Name list;
Name_1ist

-> '<name>'

-> Name_list ',' '<name>';

The keyword rlist is distinguished from list only by the fact that
its elimination results in a right recursive expansion instead of a left
recursive one:

Ext
-> 'EXTERNAL' ‘'<pame>' rlist ',' ;

-9-
expands to
Ext
-> 'EXTERNAL' Name_list;
Name_list
-> '<name>'

-> '<name>' ',' Name_list;

Right recursion is sometimes necessary to achieve the LALR(1) property,
as will be demonstrated in section III.

The basic activity of a programming language parser is to discover
the structure of an input program and to verify that the syntactic rules
of the language have not been violated. In many cases, the parser also
transforms source code into a suitable intermediate form so that later
processing is made easier. One possibility is conversion to a structure
tree, where relationships among the syntactic units of a program are
represented in tree form. For example, the FORTRAN assignment statement

A=B+C

could be represented in intermediate form by the structure tree shown in
Figure 4.

The meta-language used here contains mechanisms which allow the
grammar writer to specify tree building activities. A brief summary of
LR parsing is given to help explain how tree construction may be
combined with the parsing process.

LR parsing may be viewed as a sequence of read and reduce actions.
During a read action, the parser requests the next input token from the
scanner module and, depending upon its current state and the token re-
ceived, moves to a next state. The new token is pushed onto a parse
stack, where a summary of the "already seen" portion of source text is
maintained.

Reduce actions become possible whenever the top symbol(s) of the parse
stack exactly match the symbol(s) on the right hand side of a grammar pro-
duction. (For LR(1) parsing, the appropriateness of a reduction may be
determined by looking no more than one token ahead in the input stream.)
During a reduce action, the matching symbols are removed from the stack and
replaced by the single nonterminal which appears on the left hand side of

<10~

becomes

<name>

P - -

<name> <nﬁme>
|
] !
) |
B C
Figure 4
Structure tree corresponding to the FORTRAN
assignment statement A=B+C. Note that the
variable names are actually sub-rosa infor-
mation attached tc <name> leaves, and are
not considered nodes of the tree.

-11=-

that production, and a new state is entered. The objective is to continue
with read and reduce actions until there are no more input tokens to read
and only the goal symbol of the grammar remains on the parse stack.

Tree construction is carried out during the reduce actions of parsing.
An additional stack, called the tree node stack, is added to facilitate
the 1inking of nodes into a tree. The exact process is best described by
an example.

Suppose the grammar writer would 1ike to specify the construction of
structure trees for assignment statements. For example, he would like a
parse of A=B+C to result in the tree of Figure 4. Assume for now that
just two grammar productions are needed to describe assignment statements:

Basic_stmt -> ‘<name>' '=' Expression;
Expression -> '<name>' '+' '<name>';

His major task will be to imagine how such statements will be parsed,
and to identify the order of the various reduce actions that will take
place. To illustrate, a parse of A=B+C is described.

First, the parser receives a <name> token from the scanner, with "A"
included as subrosa information. Since this activity is a read action,
the <name> token is pushed onto the parse stack. Whenever the parser’s
tree-building option is turned ON, receipt of a terminal symbol delimited
by angle brackets will also result in the creation of a corresponding tree
node. This new node is then pushed onto the tree node stack as shown in
Figure 5(a).

Next, the scanner supplies a token representing the FORTRAN equals
sign. Although this token participates in parse stack activities, it does
not result in creatior of a new tree node since surrounding angle brackets
are not present in the production for Basic_stmt.

Receipt of the next <name> token, corresponding to variable B, results
in actions identical to those for variable A. The modified tree node
stack is shown in Figure 5(b). Note that the parse is now "following" the
production for Expression.

The next token, representing a FORTRAN plus symbol, results only in
parse stack activities (why?). Finally, a <name> token corresponding to
variable C is read, resulting in the tree node stack of Figure 5(c).

=12~
TOP —»><Kname> 1--C
TOP—><name> -~-B <{name> +--B
TOP—»{<Kname> $--A <name> -~A <name> +--A
L] [4 L]
(] L] o
[L[]
(a) (b) (c)
After receipt of After receipt of After receipt of
token representing token representing token representing
variable A variable B variable C
TOP—>{ plus e
<name> +--A 41
- <{name> <4--B
. <name> 1--C
L4
(d)

After reduction of
Expression —> '<name>' '+' '<name>' = 'plus';

TOpP —>pecomes

<{name> F--A

plus e {¥

<{name> 4--B
<name) 4--C

(e)
After reduction of
Basic_stmt —> '<name>' '=' Expression = 'becomes';

(Compare with the tree of Figure 4)

Figure 5
Modifications of tree node stack
during parse of the FORTRAN statement
A =B+ C

f B

-13-

It now happens that the top three symbols of the parse stack exactly
match the symbols on the right hand side of the production for Expression.
A reduce action involving this production is therefore indicated, and
carried out. The grammar writer may specify that tree building activities
should also be performed at this time by augmenting his grammar production
with a double right arrow meta-symbol (=>).

For example, if he writes

Expression
-> '<name>' '+' '<name>' => 'plus’;

then during any reduce action involving that production, a new tree node
is created and labeled "plus". This node is then automatically 1inked
into the existing tree structure by means of the following actions:

1) The two <name> nodes at the top of the tree node stack, corres-
ponding to the two <name> nodes on the right hand side of the
production for Expression, are linked as sons of the new "plus"
node.

2) The sons are then popped from the tree node stack and replaced
by their parent.

The result of these actions for the current example is shown in
Figure 5(d).

The parsing process continues with a reduce action involving the
production for Basic_stmt. The fact that more tree building is desired
may be indicated by writing

Basic_stmt
-> '<name>' ‘=' Expression => 'becomes';

i In this case, a new "becomes" node is created and linked into the exist-

? ing tree structure as shown in Figure 5(e). Notice that the resulting

f‘ tree is identical to the one shown in Figure 4, and has been created
"bottom up".

During linking of the "becomes" node, the Expression nonterminal in
the production for Basic_stmt corresponds to a single node on the tree
‘ node stack (specifically, the "plus" node). It should be noted that
i nonterminals which preceed a + or * repetition meta-symbol may correspond

ﬁ-—————ﬁ

to more than one stack entry. An automatic counting mechanism is
provided to handle these cases.

This completes the review of meta-language features. A listing
of the FORTRAN parser grammar follows. Although construction of an
intermediate structure tree has been completely specified by means
of the double right arrow, the reader may wish to consult Appendix A

for a more graphic description of tree shape.

-15-

parser Fortran_compilation_unit:
#0verall program structure:

Fortran_compilation_unit
-> Program unit +

Program_unit

-> ‘'<label>' Subprogram 'END'

-> (Subprogram|Program body) 'END'

-> ‘'<label>' 'BLOCKDATA' 'EOS' Blockdata_stmts
-> 'BLOCKDATA' 'EOS' Blockdata_stmts;

Blockdata stmts
-> Specification* Data_stmt* 'END'

Subprogram
-> 'SUBROUTINE' '<name>' Subrtn_parameters 'EOS’
Program_body

-> Rtrn_type 'FUNCTION' '<name>' Parameter_list ‘EOS'

Program_body

Subrtn_parameters
-> Parameter_list

->

Parameter_list

-> (' ('<name>' list ',') ')
Rtrn_type

-> Type

-2

Type

-> 'INTEGER'

-> 'REAL'

-> 'DOUBLEPRECISION'

-> 'COMPLEX'

-> 'LOGICAL'

Program_body
-> Body groupl* Body group?

Body_group3*

'compile’;

'labeled’

'labeled'’

'blockdata’';

'subroutine’

‘function';

'parameters’';

'parameters’;

‘default';

'integer'’

'real’
'doubleprecision’
‘complex’
'logical';

'body"';

Body_groupl

-> Specification
-> External_stmt
-> Format_stmt;

Body_group2
-> Executable_stmt
-> Function_or_array;

Body_group3
-> Executable_stmt

-> Function_or_array
-> Format_stmt
-> Data_stmt;

-16-

FORTRAN declarations:

Specification

-> Spec 'EOS' -> '<label>' Spec 'E0S' => 'labeled';
Spec

-> 'DIMENSION' (Array dclIn list ',") => 'dimension'

-> 'COMMON' Com blockl Com block_rest* => 'common'

-> 'EQUIVALENCE' (Equiv_list 1ist ',') => 'equivalence'
-> Type (Dcln_element list ',') => 'declaration';
Array_dcln

-> '<name>' '(' Subscr list ')' Type placeholder => ‘'array';

Subscr_list

-> Integer =5

-> Integer ',' Integer = ot

-> Integer ',' Integer ',' Integer = '3
Integer

-> '<Iconst>' -> '<name>'; # Integer variable

Type _placeholder

o => ‘'default';
Com _blockl

-> Com_namel Dcln_list => ‘'block';
Com_namel

-5 v/| ' <name>" |/|
-5 (l/l I/l |) => 'b1ank‘;

Com_block_rest
-> Com_name_rest Dclin_list => 'block's;

Com_name_rest
-> l/l l<name>l l/!

&> '/l (/l => lb}ank|;
Dcin_list
-> Common_dcin_element 1ist ',’ o

—

Common_dc1n_element
-> ('<name>'|Common-array);

f

-18-

Common_array
-> '<pame>' '(' Iconst list ')' Type_placeholder

Equiv_list
-> ‘(' Declarator ',' (Declarator list ',') ')’

Declarator

-> '<npame>'

-> ‘'<pame>' '(' Iconst list ')’
Iconst_list

-> '<Iconst>'

-> '<Iconst>' ',' '<Iconst>'

-> ‘'<Iconst>' ',' '<Iconst>' ',' '<Iconst>'

Dcln_element
-> ('<name>'|Array_dcln);

External_stmt

-> Ext 'EOS' -> '<label>' Ext 'EOS'
Ext

-> 'EXTERNAL' ('<name>' 1ist ',')

Data_stmt

-> Data 'EOS' -> '<label>"' Data 'EOS'
Data

-> 'DATA' (Data pair list ',')

Data_pair
-> Declarator list '/' Data_list '/'

Declarator_list
-> Declarator list ',

Data_list
-> Data_item list ',

Data_item-
-> ('<Hconst>'|'<Lconst>'|Data_number)
-> '<Iconst>' '*' ('<Hconst>'|'<Lconst>'|Data_number)

‘array’;

‘share';

'element’';

'labeled’;

'external';

'labeled';

'data’;

'pair';

'declarators';

'dataitems';

Data_number

-> Complex_const

-> Number

-> '+' Number -> '-' Number

Complex_const
-> '(' Cconst_element ',' Cconst_element ')’

Cconst_element
-> '<Rconst>'

-> '+' '<Rconst>' ->'-" '<Rconst>'

Number

-> '<Iconst>' -> '<Rconst>' -> '<DPconst>';

=> 'neg';

=> 'cconst';

=> 'neg';

R —— M

-20-

FORTRAN format statements:

Format_stmt _
-> ‘'<label>' Fmt 'EOS' => 'labeled'; !
Fmt

E | -> 'FORMAT' ‘(' Slash* ')' => 'format'

-> 'FORMAT' '(' Slash* (Field 1ist Sep) Slash* ')’ => 'format';

Slash

== 1"

Sep

== -> Slash +;
Field

-> Basic_field -> Groupl

Basic_field
-> ‘'<Hconst>' > '<Fmtfld>';

Groupl
-> Repeat_count Fmtl => ‘'group';

E - Fmtl
-> |(| S]ash* |)| => lfomatt;
-> '(' Slash* (Fieldl 1list Sep) Slash* ')’ => 'format';

Fieldl
-> Basic_field -> Group?

Group2
-> Repeat_count Fmt2 => ‘'group';

Fmt2
-> '(' Slash* ')’ => 'format'
-> '(' Slash* (Basic_field 1ist Sep) Slash* ')' => 'format';

Repeat_count
-> ‘'<Iconst>' -> => 'one';

FORTRAN function or array statements:

Function_or_array

-> Foa 'EOS' -> '<label>' Foa 'EOS'
Foa
-> ‘'<name>' '(' Exprn_list ')' '=' Expression

FORTRAN executable statements:

Executable_stmt

-> Exec 'EOS' -> '<label>' Exec 'EQS'
Exec
-> 'D0' '<label>' '<name>' '=' Do_parameters

v

-> 'LOGIF' '(' Logical_exprn ')' Basic_stmt
'LOGIF' '(' Paren_name ')' Basic_stmt

-> Basic-stmt;

v

-

Do_parameters
-> Integer ',' Integer
-> Integer ',' Integer ',' Integer

Basic_stmt

-> '<name>' '=' Expression

-> 'ASSIGN' '<label>' 'TO' '<name>'

-> 'GOTO' '<label>'

-> 'GOTO' '(' Label list ')' ',' '<name>'

-> 'GOTO' ‘'<name>' ',' ‘(' Label_list ')’

-> 'ARITHIF' '(*' Arith_exprn ')' ‘<label>' ','
'<label>' ',' '<label>'

-> 'CALL' '<name>' Call_args

-> 'RETURN'

-> 'CONTINUE'

-> 'STOP'

-> 'STOP' '<Octconst>'
-> 'PAUSE'

-> 'PAUSE' '<Octconst>'
-> 'REWIND' Integer

'labeled';

'foa';

'labeled’;

'becomes’
‘assign’
‘goto’
'compgo’
'assigngo’

‘arithif'
‘call’
'return’
‘continue’
'stop'
'stop'
'pause’
'pause’
'rewind’

20

-> 'BACKSPACE' Integer
-> 'ENDFILE' Integer
-> 'READ' ‘(' Integer Frmt ')' Possible_ IO Tlist

-> 'WRITE' '(' Integer ',' Form ')' Possible IO list
-> 'WRITE' '(' Integer Form placeholder ')' I0 list

Label 1ist

-> ‘'<label>' list ','
Call_args

-~>

= '(. ('<HCOnSt>'IExpression) Tieg *.° ;).

Frmt

-> Form_placeholder

-> ',' Form;

Form

-> ('<label>"|'<name>")

Form _placeholder

->

Possible IO list

-2

-> 10_Tist;

10 list

-> (Named value|'(' Named_value rlist ',’ '}’
[*(* Iteration_list ')') rlist ',’

Iteration_list

-> (Named value|'(' Named_value rlist ',' ')
|*(* Iteration_list ')') ',' Do-specification

-> (Named value|'(' Named value rlist ',' ')’
|'(* Iteration_list ')') ',' Iteration_list

Do_specification
-> ‘'<name>' '=' Do_parameters

'backspace'’
‘endfile’
'read'
'write'
'write';

'fmt';

'fmt';

'jolist'

'iolist’';

'iterate’

'iterate';

'do_spec';

FORTRAN expressions:

Expression

-> (Logical_exprn|Arith_exprn);
Logical_caprn

-> L_term

-> Logical_exprn 'OR' (L_term|Paren_name)

-> Paren_name 'OR' (L_term|Paren_name)

L_term
-> L_factor
-> L_term 'AND' (L_factor|Paren_name)

-> Paren_name 'AND' (L_factor|Paren_name)

L_factor
-> L_primary
-> 'NOT' (L_primary|Paren_name)

L_primary

-> ‘'<Lconst>'

-> Relational_exprn

-> (' Logical_exprn. ')';
Relational_exprn

-> Arith_exprn ‘<Relop>' Arith_exprn

Arith_exprn
-> Paren_name
-> Simple AE;

Simple_AE

-> A_term

-> Simple_AE '+' (A_term|Paren_name)
-> Simple_AE '-' (A_term|Paren_name)
-> Paren_name '+' (A_term|Paren_name)
-> Paren_name '-' (A_term|Paren_name)

-> '+' (A_term|Paren_name)
'-* (A_term|Paren_name)

v

'and’
‘and';

'not';

'relop’;

'plus’
'minus'
'plus’
'minus’

‘neg';

A_term

-> A factor

-> A _term '*' (A_factor|Paren_name)

-> A _term '/' (A_factor|Paren_name)

-> Paren_name '*' (A_factor|Paren_name)
-> Paren_name '/' (A factor|Paren_name)

A_factor

-> A _primary

-> A primary '**' (A primary|Paren_name)
-> Paren name '**' (A primary!Paren_name)
A primary

~> Number

-> Complex_const

-> ‘(' Simple AE ')';

Paren_name

~> Named_value
-> '(' Paren_name ')'

Named_value
-> '<name>'
-> ‘'<name>' '(' Exprn_list ')’

Exprn_list
-> Expression list ',

end Fortran_compilation_unit

‘'mult'
'div’

‘mult’
‘div';

lpwr!
Ipwrl;

'parens';

e ————

-25.

III. Discussion

The FORTRAN parser grammar was derived in two steps. First, a
straightforward grammar was written to capture ANSI standard FORTRAN,
without regard to the LALR(1) property. The resulting grammar was then
modified to attain LALR(1). A discussion of issues relating to these

steps is given in the four sub-sections below.

Information sources
The document entitled "USA Standard FORTRAN, X3.9 - 1966" [1] served

as the basic reference for syntactic structure. Syntax charts developed

by McIlroy [8] were later used to verify that the initial grammar was
a "correct" interpretation of the standard.

Completeness
Some aspects of FORTRAN syntax are not easily specified in a parser

grammar. The following syntax rules must be processed after the pars-
ing phase (references to the standard are shown in parentheses).

1) The integer constant zero may not appear
a) as a declarator subscript in an array declaration
(7.2.1.1}), or
b) as a data item replication factor in a DATA initializa-
tion statement (7.2.2), or
c) as a parameter in a DO statement (7.1.2.8).

2) A statement label must be greater than zero (3.4).

3) Statement function definitions must precede the first execut-
able statement of the given program unit (9.1.1) (Some state-
ment function definitions cannot be syntactically dis-
tinguished from assignment statements in which an array
element appears to the left of the equals sian).

4) The dummy arguments of a statement function definition must pe
distinct variable names (8.1.1).

5) The expression appearing to the right of the equals sign in
a statement function definition may only contain
a) Non-Hollerith constants
b) Variable references

¢) Intrinsic function references

*!!'

<l

d) References to previously defined statement functions
e) External function references
Note that array element references are excluded. (8.1.1)

6) A RETURN statement may not appear in the main program (7.1.2.5).

7) Since arrays must be defined with 1, 2, or 3 dimensions (7.2.1.1),
array elements must be specified with no more than 3 sub-
seripts (5.1.3.2).

8) Array element subscripts must be written as one of the follow-
ding constructs

* v % Kk

*v -k

v

+ k

-k

v

k

< < O 0O O
*

where ¢ and k are integer constants and v is an integer vari-
able reference (5.1.3.3).
9) The number of subscripts of an array element in an EQUIVALENCE

statement must correspond to the dimensionality of the array
declarator or must be one (7.2.1.4).

Scanner Interface

A scanner interface may be specified by listing all of the token
types to be passed from scanner to parser, together with conventions
reqarding the transmission of subrosa information. Fiqures 2 and 3
1ist the FORTRAN token types used in the parser arammar of this report.
Although the choice of token types for FORTRAN is generally straight-

forward, several decisions were guided by more subtle considerations
and are worthy of special mention,

3 The end-of-statement (EOS) token is made necessary by the fact
4 that READ and WRITE statements need not contain input/output 1lists.
For example, both WRITE(6,1000) and WRITE(6,1000)YMAX are legal state-
ments according to the rules of ANSI standard FORTRAN. Suppose that
EOS tokens were not supplied by the scanner module, and a FORTRAN program
™ i

T ———————

O 1

contained the following statement sequence:

WRITE(6,1000)
YMAX =

A problem occurs when parsing reaches the end of the WRITE statement: it
is impossible for a parser with only single character look-ahead to tell
whether the next token, YMAX, is part of the WRITE statement or part of
the following assignment statement. The inclusion of an intervening

EOS token (generated by the scanner) resolves this ambiguity.

Early versions of the FORTRAN grammar expressed IF statement syntax
by means of the following productions:

Exec » 'IF' '(' Logical exprn ')' Basic_stmt;
Basic_stmt > 'IF' '(' Arith exprn ')' '<label>' ','

'<label>' ',' '<label>';

Unfortunately, these productions are not LALR(1). The problem occurs
when an IF statement of the form IF(A)--+ is encountered. The parser {
cannot decide (with just single character look-ahead) whether to reduce
the named value, A, to a logical expression or an arithmetic expression.

Discovery of this problem led to the realization that ambigquities %
involving named value appear in other contexts as well. Appendix B
gives a complete account of the probiem, and details the extensive set
of expression arammar transformations necessary to solve it.

The results of Appendix B add one more production to the description
of IF statement, but do not solve the original problem:

Exec » 'IF' '(' Logical exprn ')' Basic_stmt
> "IF* '(' Paren name ')' Basic_stmt;
Basic stmt > '"IF' '(' Arith _exprn ')' '<label>' ','
‘<label>' ',' '<label>';

Now when the parser encounters a Paren name (i.e., a named value surround-
ed by zero or more sets of parentheses), it cannot decide whether to con-
tinue reading or to reduce that Paren _name to Arith_exprn. Intuitively,

the reason is that the parser does not know which kind of IF statement

[—

28

is being parsed until after the reduce decision has been made.

The problem is solved by providing two token types for the IF key- {
word, one for logical if statements (LOGIF) and one for arithmetic if
statements (ARITHIF):

Exec »~ 'LOGIF' '(' Logical exprn ')' Basic_stmt

-~ '"LOGIF' '(' Paren_name ')' Basic_stmt;
Basic_stmt > 'ARITHIF' '(' Arith_exprn ')' '<label>' ','

'<label>' ',' '<label>';

Right Recursion

Recall from section II that both 1ist and rlist may be used to ex-
press the syntax of ordinary lists of objects. Their only distinguish-
ing feature is that list results in a left recursive expansion, while
rlist results in a right recursive one. Although Figure 6 clearly demon-
strates that left recursion is preferred in LR parsing because it results

in a smaller parse stack, right recursion is sometimes necessary to
achieve the LALR(1) property.

The FORTRAN standard describes the syntax of input/output Tists as
follows:

"A 1ist is a simple list, a simple list enclosed in parentheses,

a DO-implied 1ist, or two lists separated by a comma. Lists are

formed in the following manner. A simple list is a variable name, an

array element name, or an array name, or two simple 1ists separated

by a comma. A DO-implied 1ist is a list followed by a comma and a

DO-implied specification, all enclosed in parentheses."

This complex (and confusing!) structure may be expressed by the follow- ﬁ
ing grammar productions, where the nonterminal Named value stands for

variable name, array element name, and array name, and Iteration_list

S

may be considered a synonym for DO-implied list:

10 Tist

+ (Named_value | '(' Named value rlist ',' ')’
| *{* Iteration 1ist *'}') rlist ',*

Iteration_list

> (Named value | '(' Named value rlist ',' ')’

L)
Name_list

EXTERNAL

(a)

With left recursive
grammar production
Ext — 'EXTERNAL{ '<name>"' list ',';

[}
<name> (B)
9
<name> (A)
EXTERNAL

(b)

With right cecursive
grammar production
Ext —> 'EXTERNAL' '<name>' rlist ',';

Figure 6
Parse stack just before the name
C is read during parse of the FORTRAN statement
EXTERNAL A,B,C

[—

=30-

| '(* Iteration list ')') ',' Do _specification

> (Named value | '(' Named value rlist ',' ')’
| '(' Iteration list ')') ',' Iteration list;

To see that right recursion is necessary, consider a parse of the
statement
WRITE(6,1000) (A(I),1,I=1,5)

Receipt of the opening parenthesis of the I/0 list indicates to the
parser that either a named value list or an iteration list follows. If
left recursion has been used to specify named value lists, then a
read/reduce conflict occurs after receipt of the next token, represent-
ing array element A(I). The parser cannot decide whether to immediately
reduce this token to Named value list, or to continue reading because

an iteration list is involved. The basic problem, then, is that the
parser cannot distinguish between named value 1ists and iteration lists
until either a closing parenthesis is read (indicating the former), or
the receipt of a FORTRAN equals sign indicates that a Do-specification

is being parsed. The use of right recursion (rlist) in specifying named
value lists solves the problem by delaying all reductions until the entire
1/0 1ist has been seen. !

=3t

APPENDIX A

STRUCTURE TREE DIAGRAMS

P SUOT3TUTIIap 103 buipeay
3eyl yatm abed uo
3007 °*Sapou 3JO SSPID -- 3Q0N

* (s)adA3 patr3jroads
9yl JOo suos ¢ 10 ‘Z ‘1 --

*umoys
suos jo dnoiab ayz 1o 2 o *UOT3RWIOJUT BSOI-QNS

uos atburs e 13y3zia T gewvIEw
10J S9O0TO0UD 93RUIIJ[R == ,—~y *(s)adAy parzroads
9yl JO SUOS 3iI0W I0 O0IDZ —-

sey yoTysm apou Jeal -- <LIyow’

-32.-

"uoT3ITUTISP

W@W
*umoys : e 103 abed awes ay3z uo
suos 30 dnoib ay3z 103 . * (s)o2dA3 pat3yroads o DI9YMISTD HOOT ‘umoys
@otoyd arqissod ATuo —-- A ay3 Jo suos aiow 10 auo -- ((7pow) 918 SUOS Ou JI *Suos
aaey Aew yoTym Iapou -- ryow
Lmﬂrmr@

‘UMoys uos 9ayjy iao3J *uUMoys se

?oT10Yd arqissod Afuo -- aJm SUOS JO Iaqunu 3OBXd —-— *suos ou buraey apou -- IO
]

SNOS 40 NOILVDIJAIDJIdS SNOS JO0 ¥YIEWNN SJAON

SNOILNIANOD WWYOVId

-33-

T QUALITY PRACTICABLE

FROM COPY FURNLSHAL LV DDC i

THIS PAGE IS BE

B AL A AT i o L

(
L90v432 101901 ‘¥31am00 (NOiS 1 -

GBS)

‘A3N3IVT 39 ISAW LS LvWA0S

2334218000 v 3% (¥ 3931n()

LWis wvivq

Lvuwioy
AVTIV- Notidvn

Lywyo4
AY¥IY - NalLdwng TYNIILXI
ANBvanIaxs IMWUNI3aIx3y OUY)I41234S
e E ey A ——N—

{rugy> <haewwr>
ole (23 [-)
iz) W TR .&\b*. s' (577 urad) { revww>
@) o)
[4 ®
Cdad)

ERTONReTo) WA WVYa90dd TIVISAC

A1V I8 AV ANIWILYIS 4

40 3INO 38 4w by -

NV —
:S310N

4WIS durg OLYid 19345
} }

< *WC%UH V

P N
viv

A d.\e.\ﬁ)&. V
{ Wy

A*wSHV

-34-

< vy

CEED

| X RWON Vg

, 18 et g

i AT

— <177

7 QUALITY PRACTICABLE

F¥ROM COFY FUKNISHED 10 DDC

FPRAON TS

XD

-35-

A LU.W\S#H..U
S o> 7 yy >

A p—_

THTS PAGE IS BES

e
e
e

= vy .
l T
q A‘ DR D G N H
% S L

h.HL ,..hn.U

<35y >
——A———
LS G RS e R
® Vv - =
Yol > g "oud

J9W vivq

{dwrw >

-36-

NOISS3d4X3

NOISSTIIX3

AVIAV - NOILLINNA

S3UGN prwi A 33yHL NVHL I40W NIV_NOD
AYW 4Vv371 0L 3UON 7”5 wWodd Hivd ON—

‘310N

104

e

<
3
-t
“
=
Q
E 3 : ,_.
g8 (NMOrS 33aHL) §
w,m SA3LIWVIVd 00 IFH L W0 OML 29 AVIN DAIHLI—
2 i
K © 310N
M 2 !
& 3 :
' ber
3 2R
Ad..:ﬁ/{V
PRIV B8
e

SNIIA AWV i
NYIXI-T
dwis DISve ——

{rvow> S T

Awlis DISvd b5y

NIVLNOIX3

e

-38-

L)y >

(29vd LX3N NC Q3NNILNOD)

LPWr> Lrwrw>

& vy

IW1IS 21svd

NO1SS3Y¥dX2

{rvvowy

=30

(39v4 LX3N NO 43NNILNOD)

NOISSIVIX3I
{ISWIH
L o>
<yswaL>

! e |

o
% m ancéu Q ?Q(u .omgm. .mb.rw. .QS‘.A*SQU. .§+¢<.

(mwwd

sy IWIS 315va

% o bt 4
\.IW.)I.IJ NJdx3-v

N

NACHE SR Pk Lwd Ty
doste 30 0L SAY— AV ‘..Cm»(«\ —
»
&
&&AV A &
(> ot
(79 vy s
ACA)
% G oy
B %,
o
Y
£,
> AV vy
NG

-40-
o

D
I(WA AWV

P

Lruvw

L i el
=N

(e27N1INGY)

1WIS 92lisva

G
TR ANRE ATV

NIdX3-) N1 N2dx3-1
SMIWA WYY VA QAW 3mivA qRWYY
NIPA-Y <opy> NiIgx3-v RS i il ey -y

M
. NIdx3 -V NJIX3-1 |

NIdX3-1 NoISS33dX3

Y

~42-

(39v4

XN NT d3INNILNOD)

NY4X3 -V

a

NYdx3-v

"

NIdX3-v NIdIX3-¥¢
kuj\.,gk EA% re

N3dX3 -V

NYdXZ-V

v

2 §Surgq ™ <5y 4SWITH INVYA 2wvp

(@nune) NJdX3-V

-44-

NOISS3¥4dX%3

Lrwrw)

3MVA QIWVN

JONWNA WLWIYN

s

Appendix B

Expression Grammar Transformations

A straightforward grammar for FORTRAN expressions is shown in
Figure B1. The following abbreviations are used:

E E - expression
f : LE - logical expression
| LT - logical term

LF - logical factor

LP - logical primary

<Lconst> - logical constant (.TRUE., .FALSE.)

RE - relational expression

AE - arithmetic expression

AT - arithmetic term

AF - arithmetic factor

AP - arithmetic primary

N - number (integer, real, or double precision constant)

CC - complex constant

NV - named value (simple variable, array element, or function call)

Notice that this grammar allows a named value (NV) to appear in any
context where either a logical expression (LE) or an arithmetic expression
(AE) is required. For example, in the FORTRAN logical if statement

IF (X) GO TO 10

the named value X plays the role of a logical expression, while in the
arithmetic if statement

IF (Y) 20, 30, 40

Y takes the part of an arithmetic expression.

A serious problem occurs, however, when a named value is asked to
fill the role of a general expression (E). For example, the right-hand-
side of an assignment statement simply requires an expression; either
Togical or arithmetic will do. When a named value is encountered in
this context, the parser does not know how to reduce that named value to
expression: should it first reduce to logical primary (LP) and then con-
tinue with reductions involving logical entities, or should it first

EEt=alan

EE =SlE - toprt LT

LT -~ LF

LT > LT 'and' LF
LF > LP

LF > 'not' LP

LP > '<Lconst>'

LP > RE

LP « 50 LE T)

LP > NV

-46-

E» AE
E2LE

Figure Bl
A simple grammar for FORTRAN expressions

AE
AE
AE
AE
AE
AT
AT

+ AT

+ AE '+' AT
+~ AE '=' AT
= LR

> '-' AT

> AF

> AT '*' AF

AT ~ AT '/' AF

AF
AF
AP
AP
AP
AP

- AP

> AP '**' AP
-+ N

=IEC
%R
~+ NV

=47~

reduce to arithmetic primary (AP) and take the "arithmetic route"?
Both paths eventually lead to expression.

As a result, the grammar shown in Figure B1 is not LALR(1). Intui-
itively, the reason is that type attributes of named values are not known
during parsing.

One possible solution to the type distinction problem is to combine
the separate sub-grammars for logical and arithmetic expressions into a
sinnle grammar, similar to the approach taken in Pascal [7]. The result-
ing grammar is shown in Figure B2. Extra processing will now be required
during later phases of analysis to verify that:

1) expressions do not inappropriately contain both logical and
arithmetic operators, and

2) logical and arithmetic expressions correctly appear in contexts
where they are required.

Unfortunately, the grammar of Figure B2 is not LALR(1) either. The
production required for relational expression (RE) has caused the non-
terminal E to become both left- and right-recursive. Pascal avoids this
problem by placing the syntactic description for relational expression
"higher" in the grammar. This arrangement has a side effect of requiring
parentheses in logical expressions of the form:

(X<5) AND (Y>3).

Since the 1966 ANSI Standard clearly indicates that such parentheses

are not required in FORTRAN, it is not possible to similarly modify the
grammar of Figure B2. Thus, the combined sub-grammar approach to attain-
ing the LALR(1) property must be abandoned.

Consider again the simple grammar of Figure Bl. Another possible
solution is to remove one of the productions LP - NV or AP - NV. This may
be accomplished by use of the well-known "back substitution" technique,

a process which guarantees that the language being generated does not
change (see Lemma 4.2 in [5]). LP > NV is arbitrarily chosen for removal.

During back subsititution, two new productions are added to compen-
sate for the Toss of LP » NV:

LF + 'not' NV
LF = NV.

-48-

E+ ‘4" 17
E->"'-'7T

Eo E "$"
E»E"-"T

El B ot T
T > F

T T A% F
T TR

T = T Yand® F
i p

F o P ikEiap
F = 'not' P
P+ N

Pl

T L S
P + '<Lconst>
P >~ RE

P> NV

RE > £ '<Relop>' E

Figure B2
Grammar with logical and arithmetic expressions combined.
The production for RE causes E to become both left- and right-
recursive.

U

-49-

Notice that the second of these is another of the form a » NV (where a is
some non-terminal) and must therefore be removed. Figure B3 shows the
grammar that results after four such applications of back substitution.
The table below indicates the production removed at each step:

STEP PRODUCTION REMOVED
1 LP ~ NV
2 LF > NV
3 LT » NV
4 LE » NV
] The important consequence of this action has been to remove LP > NV

in favor of E > NV. On the surface it appears that a similar removal of
AP - NV will solve the problem, since E -~ NV would then be the only re-
maining production of the form o -~ NV. However, the back substitution

designed to eliminate LP -~ NV has uncovered a deeper problem. Consider,
for example, the FORTRAN assignment statement X = (Y), in which a paren-
thesized named value appears in a context where a general expression is
required. There are still two possibilities for reduction to E:

1) By using LP > '(' NV ')'asthe first step in the reduction, or
2) By first reducing NV to AE {usina AP > NV as a first step) and
then by reducing '(' AE ')' to E (via the production AP » '(' AE ')').

It is now clear that the problem with the simple grammar of Figure BRI
is not just one of reducing NV to E, but involves the reduction of paren-
thesized NV's as well, where nesting levels may be arbitrarily deep!

With this in mind, imagine the effects of continuing with more
rounds of back substitution. Each round begins with elimination of
a production

LP » |(¢...v(o NV s)l...v)p’

where the depth of nesting has increased by one from the previous round.
The grammar grows larger and larger, but a convenient pattern has
emerged: newly added productions are similar to those seen in Figure B3,
but with ever-increasing sets of parentheses surrounding those posi-
tions where an NV appears.

If this process were to continue indefinitely, a new non-ter-
minal could be introduced to take advantage of this pattern:

1 -50-
E -+ AE
L E -+ LE
] E-+ NV
LE » LT AE -~ AT
LE » LE 'or' LT AE > AE '+' AT
LE > LE 'or NV AE -~ AE '-' AT
LE > NV 'or' LT AE -~ '+' AT
LE > NV 'or' NV AE > '-' AT
LT » LF AT > AF
LT = LT "and' LF AT - AT '*' AF
LT - LT 'and' NV AT - AT '/' AF
LT > NV 'and' LF AF + AP
LT > NV 'and' NV AF -~ AP '**!' Ap
LF ~ LP AP -+ N
LF > 'not' LP AP » CC
LF > 'not' NV AP > '(' AE ')’
LP + '<Lconst>' AP -+ NV
LP > RE
LPF = (" RE '}
LP > (" Ny)"

EX = 'LOGIF' ‘(' LE *)' BS
EX - 'LOGIF' '(' NV ')' BS

Figure B3

Expression grammar after four steps of back substitution.
The additional production required for logical-if statement
is also shown, with abbreviations:

EX - executable statement
'LOGIF' - IF token for logical-if statement
BS - basic statement (any executable except DO or
logical-if)

-5]-

PNV > NV
PNV ~ (' PNV ')°,

This non-terminal, pronounced "parenthesized named value", captures

L the notion of a named value enclosed by zero or more sets of paren-
theses. It may be used to "collapse" similar productions, thereby
shortening the grammar without changing the language generated.

Figure B4 shows the simplified grammar which results. Motice
that a potentially troublesome production, of the form
LP = "('eee"(" NV *)'e-+")', has been safely dropped from the grammar
since after a sufficiently large number of back substitutions it repre-
sents a logical primary containing so many parentheses that there is
not room to fit them all into a standard FORTRAN statement (1imited
to 19 continuation Tines).

When a similar process is applied to arithmetic expressions, as
shown in Figure B5, the original problem finally disappears. Stand-
alone named values (possibly enclosed in parentheses) may be unambig-
uously reduced, first to PNV and then to E. Named values appearing
in more complicated expressions are recognized by the productions
which were added during back substitution.

Although the grammar of Figure B5 satisfies the LALR(1) property,
it is convenient to simplify it by means of the followina steps:

1) Replace all occurrences of AE in the grammar to SAE (simple
arithmetic expression). The productions for E become:
E > LE
E » SAE
E » PNV

2) Introduce a new "intermediate" non-terminal AE, such that:
E »+ LE
E > AE
AE -~ SAE
AE -+ PNV

3) Use the new non-terminal to collapse productions involving
basic statement (BS) and relational expression (RE).

The final LALR(1) grammar for FORTRAN expressions is shown in
Figure B6.

=52-

; E -+ AE
£+ LE
E > PNV

PNV - NV
PNV > '(* PNV ')

LE - LT

LE + LE ‘or' LT
LE -+ LE 'or' PNV
LE - PNV 'or' LT
LE > PNV 'or' PNV
LT = LF

LT > LT 'and' LF
LT > LT 'and' PNV
LT - PNV 'and' LF

LT > PNV ‘'and' PNV
LF - LP

LF + 'not' LP

LF > 'not' PNV

LP » '<Lconst>'

LP + RE

£+ " LE ')

EX -+ “LOGIF' *(* LE '}* BS

EX - 'LOGIF' '(' PNV ')' BS

Figure B4
Grammar after many steps of back substitution and sub-

sequent simplification via the introduced nonterminal
PNV.

AE > AT

AE » AE '+' AT

AE - AE '-' AT

AE - '+' AT

AE - '-' AT

AT -~ AF

AT > AT '*' AF

AT -~ AT '/' AF

AF - AP

AF > AP '**' Ap
AP > N

AP + CC

AP » '(' AE ')’
AP - NV

LE »
LE »
LE »
EE &
LE +
LT »
LY. &
LT »
LT »
LT -
LF »
LF »
LF »
LP ~
LP »
LP »

EX »
EX »

LT

LE 'or' LT
LE 'or' PNV
PNV 'or' LT
PNV 'or' PNV
LF

LT 'and' LF
LT 'and' PNV
PNV 'and' LF
PNV 'and' PNV
LP

'not' LP
'not' PNV
'<Lconst>’
RE

|(| LE l)l

"LOGIF" (' LE ")" 8BS
'LOGIF' '(' PNV ')' BS

-53-

E -+ AE
B > LE
E > PNV

PNV > NV
PNV > ' (' PNV ')

AE + AT

AE + AE ('+'|'-") AT
AE ~ AE ('+'|'-') PNV
AE + PNV ('+'['-') AT
AE > PNV ('+'|'-') PNV
RE > ('+'['-') AT

AE » ('+']'-") PNV

AT > AF

AT + AT ('*'|'/') AF
AT > AT (**']'/*) PNV
AT > PNV ('*']'/") AF
AT > PNV ('*'|'/") PNV
AF - AP

AF > AP '**' AP

AF > AP '*x' pNY

AF ~ PNV '**' Ap

AF > PNV '**' PNV
AP > N

AP > CC

AP > '(" BE ')

BS - 'ARITHIF' '(' AE ')' '<label>' ',' '<label>' ',' ‘<label>'
BS - 'ARITHIF' '(' PNV ')' '<label>' ',' '<label>' ',' '<label>'
RE + AE '<Relop>' AE
RE + AE '<Relop>' PNV
RE > PNV '<Relop>' AE
RE + PNV '<Relop>' PNV

Figure BS

Resulting grammar after back substitution and simplification in the

arithmetic expression sub-grammar.

Additional productions required

for basic statement (BS) and relational expression (RE) are also shown.

EE »
LE »
LE »
RE +
LE »
LT »
LT »
L1 =
[T
i
LF >
LF »
LF »
LP »
| 120
P

EX »
EX »

5

E > AE
E-> LE

PNV > NV
PNV > '(' PNV ')!

LT

LE ‘or' LT
LE 'or' PNV
PNV 'or' LT
PNV 'or' PNV
LF

LT 'and' LF
LT 'and' PNV
PNV 'and' LF
PNV 'and* PNV
LP

'not' LP
‘not' PNV
'<Lconst>'
RE

n(v LE n)n

"LOGIFY “(* LE "} BS
'LOGIF' '(' PNV '}' BS

AE > PNV
AE » SAE

SAE ~ AT

SAE » SAE ('+'|'~') AT
SAE > SAE ('+'|'-') PNV
SAE > PNV ('+'['-*) AT
SAE - PNV ('+']'-') PNV
SAE > ('+']'-') AT

SAE > ('+']'-") PNV

AT > AF

AT > AT (**'['/') AF
AT > AT ('*'['/*) PNV
AT = B0 (=) aF
AT > PNV ("*'|'/') PNV
AF > AP

AF > AP '¥x' AP

AF > AP '**' PNV

AF > PNV '**' AP

AF > PNV '**' PNV

AP > N

AP » CC

AP > '(' SAE ')

BS > 'ARITHIF' '(' AE ')' '<label>' ',' ‘'<label>' ',' '<label>’
RE -~ AE '<Relop>' AE

Figure B6

Final LALR(1) grammar for FORTRAN expressions

=55

Bibliography
[1] American National Standards Institute, FORTRAN, ANSI X3.9, 1966.

[2] Osterweil, L. J. and Fosdick, L. D., DAVE - a validation, error de-
tection, and documentation system for FORTRAN programs. Software
practice and experience, 6, 4, October - December, 1976.

[3] Rauhauser, R. C., Use of the BOBSW system to generate a parser for
the DAVE II project. Tech. report CU-CS- 78, University of
Colorado, forthcoming.

[4] Gries, D., Compiler construction for digital computers. John Wiley
and Sons, New York, 1971.

[5] Hopcroft, J. E. and Ullman, J. D., Formal languages and their rela-
tion to automata. Addison-Wesley, Reading, Mass., 1969.

(6] Lalonde, W. R., An efficient LALR-parser-generator. Tech. report
CSRG-2, University of Toronto, 1971.

[7] Jensen, K. and Wirth, N., Pascal user manual and report. Springer-
Verlag, New York, Second Ed., 1975.

[8] McIiroy, M. D., ANS FORTRAN charts. Computer science technical
report #13, Bell Laboratories, Murray Hill, N. J.

